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Abstract. The one-dimensional resonant tunnelling problem has been investigated using the 
method of expansion in terms of the eigenfunctions of the scattering problem. It is shown 
that tunnelling is in fact described by two different times, and analysis is,performed of the 
distortion of the tunnelling pulse. 

Recently, Collins et a1 (1987a, b) have performed a detailed study of the resonant 
tunnelling process. Both analytically and numerically, they have calculated the electron 
tunnelling time which had been associated with the time necessary for the maximum of 
the electron wave packet to pass through the two-barrier (or similar) potential structure. 
However, the packet form changes as a result of tunnelling; so the single time cannot 
properly describe the tunnelling of the whole packet. It will be shown in this paper that 
the full dynamical description of the wave pulse resonant tunnelling is given by two 
times. 

When an electron pulse collides with a scatterer, an interaction influences its move- 
ment. As a consequence a time delay appears between the scattered packet and the 
freely moving wave packet which covers the same path without interaction (Wigner 
1955). The time delay can be expressed as (Goldberger and Watson 1964) 

where S is the corresponding scattering matrix. 
Two points should be mentioned in connection with this expression. First, equation 

(1) is valid for a packet having a well defined energy; the uncertainty be should be small 
compared with the width y of the resonant state or, more generally, with the width of 
the energy interval where the scattering matrix changes significantly. Secondly, it is clear 
from (1) that the time delay has a definite value only for the eigenfunctions of the 
scattering problem because in that representation the S-matrix has a diagonal form. 
Every eigenfunction has its own delay time, and the resonance at a given energy for 
some function affects only its delay while the other delay times are still due to the 
potential scattering. 

We shall use this approach to analyse the one-dimensional problem of resonant 
tunnelling through a symmetrical potential structure. The asymptotic expression for the 
electron wavefunction can be written in the general form (Landau and Lifshitz 1974) 

Q = -i d(1n S)/de (1) 

where n = sgn x = 4 1, S,, are the elements of the S-matrix for scattering by the potential 
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structure and F(? 1) are arbitrary coefficients. For a symmetrical potential, one can 
choose as the basis set the odd and even functions (2) with F,(n) = F,(-n) and 
Fa = -Fa( - a ) ;  correspondingly: 

qs  = exp(-iklx/) - S ,  exp(iklx1) 

v ,  = [exp(-iklx/) - Sa exp(iklxl)] sgnx. 
(3) 

In this representation the S-matrix has a diagonal form with the two eigenvalues S, = 
exp(2i6,) and Sa = exp(2i6,), 6, and 6, being the phase shifts. 

A quasi-local resonant state in a symmetrical potential can be either odd (AS) or even 
(s). For example let us consider tunnelling at energies near the resonant energy for odd 
states. In this case the phase shift for the AS waves has the standard resonant form 
(Landau and Lifshitz 1974) 

6 ,  = 6(O) - tan-l(y/[2(~ - E ~ ) ] }  (4) 

where so and y denote the energy and the width of the resonance ( E ~  y ) ,  and 6;') is 
the phase shift due to the potential scattering. 6 Lo) is a slowly varying function of energy 
so that one can neglect its variation in the vicinity of resonance and treat 6i0) as a 
constant. The symmetrical wave phase shift 6 ,  at E = is also caused by potential 
scattering; hence one can also put 6, = 6 io) = constant. 

Usually, resonant tunnelling is studied for the potentials which are almost non- 
transparent to electrons having energies far from the resonant values. In this case, one 
obtains 

6 io) = 6 $0). ( 5 )  
To demonstrate this, let us consider the wavefunction Y = (q, + q s ) / 2 .  This function 
does not contain the wave from - x ,  and so the coefficient of exp(-ikx) at x < 0 is the 
transmission coefficient t :  

t = (Sa - S,)/2. (6) 
If for energy sufficiently far from resonance the barrier is not transparent, i.e. t = 0, and 
if the resonant phase shift is small, one obtains Sa = S ,  or 6 Lo) = 6 io). 

which 
moves towards the potential structure from +W.  The pulse can be expanded in terms of 
eigenfunctions (3), i.e. expressed as a sum of the odd and even parts (figure 1). Each 
component has its own specific phase shift and time delay; hence the pulse tunnelling is 
characterised by two different times, one of which is resonant and the other is not. 

Now let us consider the resonant tunnelling of the wave packet with E = 
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Before collision with the structure the waves in both s and AS packets are in phase so 
one adds to another at x > 0 to form the initial pulse and at x < 0 they cancel one another. 
After the collision the waves in the AS pulse undergo a resonant phase shift in addition 
to that caused by potential scattering so that s and AS waves become displaced in phase 
by 2(S, - 6,) = n for E = (see (4) and ( 5 ) ) .  Consequently the AS packet now adds to 
the s packet at x < 0 to form the tunnelling pulse whereas at x > 0 the packets cancel 
each other. However, the compensation at positive x is not complete because these two 
components have different delays; for the resonant pulse 

Q, = 2 d 6 , / d ~  = 2(d/d~){ tan-*[y /2(~  - E ~ ) ] }  = Y / [ ( E  - (7) 
and for the non-resonant pulse the delay is much smaller, i.e. 

+ y2/4] = 4/y 

Qs = 2 d a s / d ~  -=S Qa(E0) 
because the potential scattering phase changes significantly only for energy variation of 
order of + y .  Hence two reflected packets appear, as has been found previously by 
numerical calculations (Collins et aZ1987b). The difference in delay values also leads to 
distortion of the tunnelling pulse (figure 2). 

The leading edge of the tunnelling packet coincides with the front of its non-resonant 
component (which is even in our example). Its delay is small; the absolute value of Q, is 
of the order of magnitude of the electron flight time through the potential structure. 
Strictly speaking, Q, is negative so that it is not a decay but rather an advance? but the 
important point is that the leading edge of the tunnelling packet shows no resonant 
delay. On the contrary, the trailing edge of the tunnelling pulse coincides with that of 
the resonant component which has a resonant delay Q, (see (7)). Q, is determined by 
the lifetime of the quasi-local state in the potential structure and can be large (Ricco and 
Azbell984). The mean delay time, i.e. the delay z of the pulse middle point (the pulse’s 
maximum) equals (Q, - Q,)/2 = Qa/2. This agrees with the result obtained earlier 
(Collins et a1 1987a, Teranishi et aZl987): z = d(arg t)/dE, where t is  the transmission 
coefficient. Using (6), one easily obtains e,/% = z. 

As a result of the resonant tunnelling the length of electron packet increases by 
u(Q, - Q,) = uQ,, where U is the group velocity and Q, the resonant delay (7). The 
leading edge of the packet passes through the barrier almost without delay and the pulse 
elongates mainly owing to the delay of the trailing edge. It is worth noting that for the 
packet with energy width A& -=S y the elongation caused by the tunnelling is small in 
comparison with the pulse length. 

To conclude, the one-dimensional resonant tunnelling problem has been investigated 
here using the method of expansion in terms of the scattering problem eigenfunctions. 
It is shown that the wave pulse tunnelling is described by two different times. Analysis 
of the tunnelling pulse distortion has been performed. 
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